flowchart TB v0(Channel.fromList) v2(filter) v11(filter) v23(branch) v50(concat) v35(cross) v45(cross) v54(branch) v81(concat) v66(cross) v76(cross) v82(filter) v112(concat) v97(cross) v107(cross) v119(cross) v129(cross) v138(branch) v165(concat) v143(delimit_fraction) v150(cross) v160(cross) v169(branch) v196(concat) v174(delimit_fraction) v181(cross) v191(cross) v197(filter) v205(rna_filter_with_counts) v212(cross) v222(cross) v228(filter) v236(rna_do_filter) v243(cross) v253(cross) v259(filter) v289(concat) v267(filter_with_scrublet) v274(cross) v284(cross) v296(cross) v303(cross) v315(cross) v322(cross) v326(Output) subgraph group_qc [qc] v28(grep_mitochondrial_genes) v59(grep_ribosomal_genes) v90(calculate_qc_metrics) end v23-->v50 v54-->v81 v81-->v82 v138-->v165 v169-->v196 v196-->v197 v0-->v2 v2-->v11 v23-->v28 v28-->v35 v23-->v35 v23-->v45 v45-->v50 v54-->v59 v59-->v66 v54-->v66 v54-->v76 v76-->v81 v82-->v90 v90-->v97 v82-->v97 v82-->v107 v107-->v112 v112-->v119 v11-->v119 v11-->v129 v138-->v143 v143-->v150 v138-->v150 v138-->v160 v160-->v165 v169-->v174 v174-->v181 v169-->v181 v169-->v191 v191-->v196 v197-->v205 v205-->v212 v197-->v212 v197-->v222 v228-->v236 v236-->v243 v228-->v243 v228-->v253 v259-->v267 v267-->v274 v259-->v274 v259-->v284 v284-->v289 v289-->v296 v2-->v296 v296-->v303 v2-->v303 v2-->v315 v315-->v322 v2-->v322 v322-->v326 v11-->v23 v28-->v45 v50-->v54 v59-->v76 v90-->v107 v112-->v129 v129-->v138 v143-->v160 v165-->v169 v174-->v191 v222-->v228 v205-->v222 v253-->v259 v236-->v253 v267-->v284 v289-->v315 style group_qc fill:#F0F0F0,stroke:#969696; style v0 fill:#e3dcea,stroke:#7a4baa; style v2 fill:#e3dcea,stroke:#7a4baa; style v11 fill:#e3dcea,stroke:#7a4baa; style v23 fill:#e3dcea,stroke:#7a4baa; style v50 fill:#e3dcea,stroke:#7a4baa; style v28 fill:#e3dcea,stroke:#7a4baa; style v35 fill:#e3dcea,stroke:#7a4baa; style v45 fill:#e3dcea,stroke:#7a4baa; style v54 fill:#e3dcea,stroke:#7a4baa; style v81 fill:#e3dcea,stroke:#7a4baa; style v59 fill:#e3dcea,stroke:#7a4baa; style v66 fill:#e3dcea,stroke:#7a4baa; style v76 fill:#e3dcea,stroke:#7a4baa; style v82 fill:#e3dcea,stroke:#7a4baa; style v112 fill:#e3dcea,stroke:#7a4baa; style v90 fill:#e3dcea,stroke:#7a4baa; style v97 fill:#e3dcea,stroke:#7a4baa; style v107 fill:#e3dcea,stroke:#7a4baa; style v119 fill:#e3dcea,stroke:#7a4baa; style v129 fill:#e3dcea,stroke:#7a4baa; style v138 fill:#e3dcea,stroke:#7a4baa; style v165 fill:#e3dcea,stroke:#7a4baa; style v143 fill:#e3dcea,stroke:#7a4baa; style v150 fill:#e3dcea,stroke:#7a4baa; style v160 fill:#e3dcea,stroke:#7a4baa; style v169 fill:#e3dcea,stroke:#7a4baa; style v196 fill:#e3dcea,stroke:#7a4baa; style v174 fill:#e3dcea,stroke:#7a4baa; style v181 fill:#e3dcea,stroke:#7a4baa; style v191 fill:#e3dcea,stroke:#7a4baa; style v197 fill:#e3dcea,stroke:#7a4baa; style v205 fill:#e3dcea,stroke:#7a4baa; style v212 fill:#e3dcea,stroke:#7a4baa; style v222 fill:#e3dcea,stroke:#7a4baa; style v228 fill:#e3dcea,stroke:#7a4baa; style v236 fill:#e3dcea,stroke:#7a4baa; style v243 fill:#e3dcea,stroke:#7a4baa; style v253 fill:#e3dcea,stroke:#7a4baa; style v259 fill:#e3dcea,stroke:#7a4baa; style v289 fill:#e3dcea,stroke:#7a4baa; style v267 fill:#e3dcea,stroke:#7a4baa; style v274 fill:#e3dcea,stroke:#7a4baa; style v284 fill:#e3dcea,stroke:#7a4baa; style v296 fill:#e3dcea,stroke:#7a4baa; style v303 fill:#e3dcea,stroke:#7a4baa; style v315 fill:#e3dcea,stroke:#7a4baa; style v322 fill:#e3dcea,stroke:#7a4baa; style v326 fill:#e3dcea,stroke:#7a4baa;
Rna singlesample
Processing unimodal single-sample RNA transcriptomics data.
Info
ID: rna_singlesample
Namespace: workflows/rna
Links
Example commands
You can run the pipeline using nextflow run
.
View help
You can use --help
as a parameter to get an overview of the possible parameters.
nextflow run openpipelines-bio/openpipeline \
-r 2.1.0 -latest \
-main-script target/nextflow/workflows/rna/rna_singlesample/main.nf \
--help
Run command
Example of params.yaml
# Input
id: # please fill in - example: "foo"
input: # please fill in - example: "dataset.h5mu"
# layer: "foo"
# Output
# output: "$id.$key.output.h5mu"
# Filtering options
# min_counts: 200
# max_counts: 5000000
# min_genes_per_cell: 200
# max_genes_per_cell: 1500000
# min_cells_per_gene: 3
# min_fraction_mito: 0.0
# max_fraction_mito: 0.2
# min_fraction_ribo: 0.0
# max_fraction_ribo: 0.2
# Mitochondrial & Ribosomal Gene Detection
# var_gene_names: "gene_symbol"
# var_name_mitochondrial_genes: "foo"
# obs_name_mitochondrial_fraction: "foo"
mitochondrial_gene_regex: "^[mM][tT]-"
# var_name_ribosomal_genes: "foo"
# obs_name_ribosomal_fraction: "foo"
ribosomal_gene_regex: "^[Mm]?[Rr][Pp][LlSs]"
# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"
# Arguments
nextflow run openpipelines-bio/openpipeline \
-r 2.1.0 -latest \
-profile docker \
-main-script target/nextflow/workflows/rna/rna_singlesample/main.nf \
-params-file params.yaml
Note
Replace -profile docker
with -profile podman
or -profile singularity
depending on the desired backend.
Argument groups
Input
Name | Description | Attributes |
---|---|---|
--id |
ID of the sample. | string , required, example: "foo" |
--input |
Path to the sample. | file , required, example: "dataset.h5mu" |
--layer |
Input layer to start from. By default, .X will be used. | string |
Output
Name | Description | Attributes |
---|---|---|
--output |
Destination path to the output. | file , required, example: "output.h5mu" |
Filtering options
Name | Description | Attributes |
---|---|---|
--min_counts |
Minimum number of counts captured per cell. | integer , example: 200 |
--max_counts |
Maximum number of counts captured per cell. | integer , example: 5000000 |
--min_genes_per_cell |
Minimum of non-zero values per cell. | integer , example: 200 |
--max_genes_per_cell |
Maximum of non-zero values per cell. | integer , example: 1500000 |
--min_cells_per_gene |
Minimum of non-zero values per gene. | integer , example: 3 |
--min_fraction_mito |
Minimum fraction of UMIs that are mitochondrial. Requires –obs_name_mitochondrial_fraction. | double , example: 0 |
--max_fraction_mito |
Maximum fraction of UMIs that are mitochondrial. Requires –obs_name_mitochondrial_fraction. | double , example: 0.2 |
--min_fraction_ribo |
Minimum fraction of UMIs that are ribosomal. Requires –obs_name_ribosomal_fraction. | double , example: 0 |
--max_fraction_ribo |
Maximum fraction of UMIs that are ribosomal. Requires –obs_name_ribosomal_fraction. | double , example: 0.2 |
Mitochondrial & Ribosomal Gene Detection
Name | Description | Attributes |
---|---|---|
--var_gene_names |
.var column name to be used to detect mitochondrial/ribosomal genes instead of .var_names (default if not set). Gene names matching with the regex value from –mitochondrial_gene_regex or –ribosomal_gene_regex will be identified as mitochondrial or ribosomal genes, respectively. | string , example: "gene_symbol" |
--var_name_mitochondrial_genes |
In which .var slot to store a boolean array corresponding the mitochondrial genes. | string |
--obs_name_mitochondrial_fraction |
When specified, write the fraction of counts originating from mitochondrial genes (based on –mitochondrial_gene_regex) to an .obs column with the specified name. Requires –var_name_mitochondrial_genes. | string |
--mitochondrial_gene_regex |
Regex string that identifies mitochondrial genes from –var_gene_names. By default will detect human and mouse mitochondrial genes from a gene symbol. | string , default: "^[mM][tT]-" |
--var_name_ribosomal_genes |
In which .var slot to store a boolean array corresponding the ribosomal genes. | string |
--obs_name_ribosomal_fraction |
When specified, write the fraction of counts originating from ribosomal genes (based on –ribosomal_gene_regex) to an .obs column with the specified name. Requires –var_name_ribosomal_genes. | string |
--ribosomal_gene_regex |
Regex string that identifies ribosomal genes from –var_gene_names. By default will detect human and mouse ribosomal genes from a gene symbol. | string , default: "^[Mm]?[Rr][Pp][LlSs]" |