Rna singlesample

Processing unimodal single-sample RNA transcriptomics data.

Info

ID: rna_singlesample
Namespace: workflows/rna

Example commands

You can run the pipeline using nextflow run.

View help

You can use --help as a parameter to get an overview of the possible parameters.

nextflow run openpipelines-bio/openpipeline \
  -r 2.1.0 -latest \
  -main-script target/nextflow/workflows/rna/rna_singlesample/main.nf \
  --help

Run command

Example of params.yaml
# Input
id: # please fill in - example: "foo"
input: # please fill in - example: "dataset.h5mu"
# layer: "foo"

# Output
# output: "$id.$key.output.h5mu"

# Filtering options
# min_counts: 200
# max_counts: 5000000
# min_genes_per_cell: 200
# max_genes_per_cell: 1500000
# min_cells_per_gene: 3
# min_fraction_mito: 0.0
# max_fraction_mito: 0.2
# min_fraction_ribo: 0.0
# max_fraction_ribo: 0.2

# Mitochondrial & Ribosomal Gene Detection
# var_gene_names: "gene_symbol"
# var_name_mitochondrial_genes: "foo"
# obs_name_mitochondrial_fraction: "foo"
mitochondrial_gene_regex: "^[mM][tT]-"
# var_name_ribosomal_genes: "foo"
# obs_name_ribosomal_fraction: "foo"
ribosomal_gene_regex: "^[Mm]?[Rr][Pp][LlSs]"

# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"

# Arguments
nextflow run openpipelines-bio/openpipeline \
  -r 2.1.0 -latest \
  -profile docker \
  -main-script target/nextflow/workflows/rna/rna_singlesample/main.nf \
  -params-file params.yaml
Note

Replace -profile docker with -profile podman or -profile singularity depending on the desired backend.

Argument groups

Input

Name Description Attributes
--id ID of the sample. string, required, example: "foo"
--input Path to the sample. file, required, example: "dataset.h5mu"
--layer Input layer to start from. By default, .X will be used. string

Output

Name Description Attributes
--output Destination path to the output. file, required, example: "output.h5mu"

Filtering options

Name Description Attributes
--min_counts Minimum number of counts captured per cell. integer, example: 200
--max_counts Maximum number of counts captured per cell. integer, example: 5000000
--min_genes_per_cell Minimum of non-zero values per cell. integer, example: 200
--max_genes_per_cell Maximum of non-zero values per cell. integer, example: 1500000
--min_cells_per_gene Minimum of non-zero values per gene. integer, example: 3
--min_fraction_mito Minimum fraction of UMIs that are mitochondrial. Requires –obs_name_mitochondrial_fraction. double, example: 0
--max_fraction_mito Maximum fraction of UMIs that are mitochondrial. Requires –obs_name_mitochondrial_fraction. double, example: 0.2
--min_fraction_ribo Minimum fraction of UMIs that are ribosomal. Requires –obs_name_ribosomal_fraction. double, example: 0
--max_fraction_ribo Maximum fraction of UMIs that are ribosomal. Requires –obs_name_ribosomal_fraction. double, example: 0.2

Mitochondrial & Ribosomal Gene Detection

Name Description Attributes
--var_gene_names .var column name to be used to detect mitochondrial/ribosomal genes instead of .var_names (default if not set). Gene names matching with the regex value from –mitochondrial_gene_regex or –ribosomal_gene_regex will be identified as mitochondrial or ribosomal genes, respectively. string, example: "gene_symbol"
--var_name_mitochondrial_genes In which .var slot to store a boolean array corresponding the mitochondrial genes. string
--obs_name_mitochondrial_fraction When specified, write the fraction of counts originating from mitochondrial genes (based on –mitochondrial_gene_regex) to an .obs column with the specified name. Requires –var_name_mitochondrial_genes. string
--mitochondrial_gene_regex Regex string that identifies mitochondrial genes from –var_gene_names. By default will detect human and mouse mitochondrial genes from a gene symbol. string, default: "^[mM][tT]-"
--var_name_ribosomal_genes In which .var slot to store a boolean array corresponding the ribosomal genes. string
--obs_name_ribosomal_fraction When specified, write the fraction of counts originating from ribosomal genes (based on –ribosomal_gene_regex) to an .obs column with the specified name. Requires –var_name_ribosomal_genes. string
--ribosomal_gene_regex Regex string that identifies ribosomal genes from –var_gene_names. By default will detect human and mouse ribosomal genes from a gene symbol. string, default: "^[Mm]?[Rr][Pp][LlSs]"

Authors

  • Dries De Maeyer (author)

  • Robrecht Cannoodt (author, maintainer)

  • Dries Schaumont (author)

Visualisation

flowchart TB
    v0(Channel.fromList)
    v2(filter)
    v11(filter)
    v23(branch)
    v50(concat)
    v35(cross)
    v45(cross)
    v54(branch)
    v81(concat)
    v66(cross)
    v76(cross)
    v82(filter)
    v112(concat)
    v97(cross)
    v107(cross)
    v119(cross)
    v129(cross)
    v138(branch)
    v165(concat)
    v143(delimit_fraction)
    v150(cross)
    v160(cross)
    v169(branch)
    v196(concat)
    v174(delimit_fraction)
    v181(cross)
    v191(cross)
    v197(filter)
    v205(rna_filter_with_counts)
    v212(cross)
    v222(cross)
    v228(filter)
    v236(rna_do_filter)
    v243(cross)
    v253(cross)
    v259(filter)
    v289(concat)
    v267(filter_with_scrublet)
    v274(cross)
    v284(cross)
    v296(cross)
    v303(cross)
    v315(cross)
    v322(cross)
    v326(Output)
    subgraph group_qc [qc]
        v28(grep_mitochondrial_genes)
        v59(grep_ribosomal_genes)
        v90(calculate_qc_metrics)
    end
    v23-->v50
    v54-->v81
    v81-->v82
    v138-->v165
    v169-->v196
    v196-->v197
    v0-->v2
    v2-->v11
    v23-->v28
    v28-->v35
    v23-->v35
    v23-->v45
    v45-->v50
    v54-->v59
    v59-->v66
    v54-->v66
    v54-->v76
    v76-->v81
    v82-->v90
    v90-->v97
    v82-->v97
    v82-->v107
    v107-->v112
    v112-->v119
    v11-->v119
    v11-->v129
    v138-->v143
    v143-->v150
    v138-->v150
    v138-->v160
    v160-->v165
    v169-->v174
    v174-->v181
    v169-->v181
    v169-->v191
    v191-->v196
    v197-->v205
    v205-->v212
    v197-->v212
    v197-->v222
    v228-->v236
    v236-->v243
    v228-->v243
    v228-->v253
    v259-->v267
    v267-->v274
    v259-->v274
    v259-->v284
    v284-->v289
    v289-->v296
    v2-->v296
    v296-->v303
    v2-->v303
    v2-->v315
    v315-->v322
    v2-->v322
    v322-->v326
    v11-->v23
    v28-->v45
    v50-->v54
    v59-->v76
    v90-->v107
    v112-->v129
    v129-->v138
    v143-->v160
    v165-->v169
    v174-->v191
    v222-->v228
    v205-->v222
    v253-->v259
    v236-->v253
    v267-->v284
    v289-->v315
    style group_qc fill:#F0F0F0,stroke:#969696;
    style v0 fill:#e3dcea,stroke:#7a4baa;
    style v2 fill:#e3dcea,stroke:#7a4baa;
    style v11 fill:#e3dcea,stroke:#7a4baa;
    style v23 fill:#e3dcea,stroke:#7a4baa;
    style v50 fill:#e3dcea,stroke:#7a4baa;
    style v28 fill:#e3dcea,stroke:#7a4baa;
    style v35 fill:#e3dcea,stroke:#7a4baa;
    style v45 fill:#e3dcea,stroke:#7a4baa;
    style v54 fill:#e3dcea,stroke:#7a4baa;
    style v81 fill:#e3dcea,stroke:#7a4baa;
    style v59 fill:#e3dcea,stroke:#7a4baa;
    style v66 fill:#e3dcea,stroke:#7a4baa;
    style v76 fill:#e3dcea,stroke:#7a4baa;
    style v82 fill:#e3dcea,stroke:#7a4baa;
    style v112 fill:#e3dcea,stroke:#7a4baa;
    style v90 fill:#e3dcea,stroke:#7a4baa;
    style v97 fill:#e3dcea,stroke:#7a4baa;
    style v107 fill:#e3dcea,stroke:#7a4baa;
    style v119 fill:#e3dcea,stroke:#7a4baa;
    style v129 fill:#e3dcea,stroke:#7a4baa;
    style v138 fill:#e3dcea,stroke:#7a4baa;
    style v165 fill:#e3dcea,stroke:#7a4baa;
    style v143 fill:#e3dcea,stroke:#7a4baa;
    style v150 fill:#e3dcea,stroke:#7a4baa;
    style v160 fill:#e3dcea,stroke:#7a4baa;
    style v169 fill:#e3dcea,stroke:#7a4baa;
    style v196 fill:#e3dcea,stroke:#7a4baa;
    style v174 fill:#e3dcea,stroke:#7a4baa;
    style v181 fill:#e3dcea,stroke:#7a4baa;
    style v191 fill:#e3dcea,stroke:#7a4baa;
    style v197 fill:#e3dcea,stroke:#7a4baa;
    style v205 fill:#e3dcea,stroke:#7a4baa;
    style v212 fill:#e3dcea,stroke:#7a4baa;
    style v222 fill:#e3dcea,stroke:#7a4baa;
    style v228 fill:#e3dcea,stroke:#7a4baa;
    style v236 fill:#e3dcea,stroke:#7a4baa;
    style v243 fill:#e3dcea,stroke:#7a4baa;
    style v253 fill:#e3dcea,stroke:#7a4baa;
    style v259 fill:#e3dcea,stroke:#7a4baa;
    style v289 fill:#e3dcea,stroke:#7a4baa;
    style v267 fill:#e3dcea,stroke:#7a4baa;
    style v274 fill:#e3dcea,stroke:#7a4baa;
    style v284 fill:#e3dcea,stroke:#7a4baa;
    style v296 fill:#e3dcea,stroke:#7a4baa;
    style v303 fill:#e3dcea,stroke:#7a4baa;
    style v315 fill:#e3dcea,stroke:#7a4baa;
    style v322 fill:#e3dcea,stroke:#7a4baa;
    style v326 fill:#e3dcea,stroke:#7a4baa;