flowchart TB
v0(Channel.fromList)
v2(filter)
v11(filter)
v23(branch)
v50(concat)
v35(cross)
v45(cross)
v54(branch)
v81(concat)
v66(cross)
v76(cross)
v82(filter)
v112(concat)
v97(cross)
v107(cross)
v119(cross)
v129(cross)
v138(branch)
v165(concat)
v143(delimit_fraction)
v150(cross)
v160(cross)
v169(branch)
v196(concat)
v174(delimit_fraction)
v181(cross)
v191(cross)
v197(filter)
v205(rna_filter_with_counts)
v212(cross)
v222(cross)
v228(filter)
v236(rna_do_filter)
v243(cross)
v253(cross)
v259(filter)
v289(concat)
v267(filter_with_scrublet)
v274(cross)
v284(cross)
v296(cross)
v303(cross)
v315(cross)
v322(cross)
v326(Output)
subgraph group_qc [qc]
v28(grep_mitochondrial_genes)
v59(grep_ribosomal_genes)
v90(calculate_qc_metrics)
end
v23-->v50
v54-->v81
v81-->v82
v138-->v165
v169-->v196
v196-->v197
v0-->v2
v2-->v11
v23-->v28
v28-->v35
v23-->v35
v23-->v45
v45-->v50
v54-->v59
v59-->v66
v54-->v66
v54-->v76
v76-->v81
v82-->v90
v90-->v97
v82-->v97
v82-->v107
v107-->v112
v112-->v119
v11-->v119
v11-->v129
v138-->v143
v143-->v150
v138-->v150
v138-->v160
v160-->v165
v169-->v174
v174-->v181
v169-->v181
v169-->v191
v191-->v196
v197-->v205
v205-->v212
v197-->v212
v197-->v222
v228-->v236
v236-->v243
v228-->v243
v228-->v253
v259-->v267
v267-->v274
v259-->v274
v259-->v284
v284-->v289
v289-->v296
v2-->v296
v296-->v303
v2-->v303
v2-->v315
v315-->v322
v2-->v322
v322-->v326
v11-->v23
v28-->v45
v50-->v54
v59-->v76
v90-->v107
v112-->v129
v129-->v138
v143-->v160
v165-->v169
v174-->v191
v222-->v228
v205-->v222
v253-->v259
v236-->v253
v267-->v284
v289-->v315
style group_qc fill:#F0F0F0,stroke:#969696;
style v0 fill:#e3dcea,stroke:#7a4baa;
style v2 fill:#e3dcea,stroke:#7a4baa;
style v11 fill:#e3dcea,stroke:#7a4baa;
style v23 fill:#e3dcea,stroke:#7a4baa;
style v50 fill:#e3dcea,stroke:#7a4baa;
style v28 fill:#e3dcea,stroke:#7a4baa;
style v35 fill:#e3dcea,stroke:#7a4baa;
style v45 fill:#e3dcea,stroke:#7a4baa;
style v54 fill:#e3dcea,stroke:#7a4baa;
style v81 fill:#e3dcea,stroke:#7a4baa;
style v59 fill:#e3dcea,stroke:#7a4baa;
style v66 fill:#e3dcea,stroke:#7a4baa;
style v76 fill:#e3dcea,stroke:#7a4baa;
style v82 fill:#e3dcea,stroke:#7a4baa;
style v112 fill:#e3dcea,stroke:#7a4baa;
style v90 fill:#e3dcea,stroke:#7a4baa;
style v97 fill:#e3dcea,stroke:#7a4baa;
style v107 fill:#e3dcea,stroke:#7a4baa;
style v119 fill:#e3dcea,stroke:#7a4baa;
style v129 fill:#e3dcea,stroke:#7a4baa;
style v138 fill:#e3dcea,stroke:#7a4baa;
style v165 fill:#e3dcea,stroke:#7a4baa;
style v143 fill:#e3dcea,stroke:#7a4baa;
style v150 fill:#e3dcea,stroke:#7a4baa;
style v160 fill:#e3dcea,stroke:#7a4baa;
style v169 fill:#e3dcea,stroke:#7a4baa;
style v196 fill:#e3dcea,stroke:#7a4baa;
style v174 fill:#e3dcea,stroke:#7a4baa;
style v181 fill:#e3dcea,stroke:#7a4baa;
style v191 fill:#e3dcea,stroke:#7a4baa;
style v197 fill:#e3dcea,stroke:#7a4baa;
style v205 fill:#e3dcea,stroke:#7a4baa;
style v212 fill:#e3dcea,stroke:#7a4baa;
style v222 fill:#e3dcea,stroke:#7a4baa;
style v228 fill:#e3dcea,stroke:#7a4baa;
style v236 fill:#e3dcea,stroke:#7a4baa;
style v243 fill:#e3dcea,stroke:#7a4baa;
style v253 fill:#e3dcea,stroke:#7a4baa;
style v259 fill:#e3dcea,stroke:#7a4baa;
style v289 fill:#e3dcea,stroke:#7a4baa;
style v267 fill:#e3dcea,stroke:#7a4baa;
style v274 fill:#e3dcea,stroke:#7a4baa;
style v284 fill:#e3dcea,stroke:#7a4baa;
style v296 fill:#e3dcea,stroke:#7a4baa;
style v303 fill:#e3dcea,stroke:#7a4baa;
style v315 fill:#e3dcea,stroke:#7a4baa;
style v322 fill:#e3dcea,stroke:#7a4baa;
style v326 fill:#e3dcea,stroke:#7a4baa;
Rna singlesample
Processing unimodal single-sample RNA transcriptomics data.
Info
ID: rna_singlesample
Namespace: workflows/rna
Links
Example commands
You can run the pipeline using nextflow run.
View help
You can use --help as a parameter to get an overview of the possible parameters.
nextflow run openpipelines-bio/openpipeline \
-r 2.1.1 -latest \
-main-script target/nextflow/workflows/rna/rna_singlesample/main.nf \
--helpRun command
Example of params.yaml
# Input
id: # please fill in - example: "foo"
input: # please fill in - example: "dataset.h5mu"
# layer: "foo"
# Output
# output: "$id.$key.output.h5mu"
# Filtering options
# min_counts: 200
# max_counts: 5000000
# min_genes_per_cell: 200
# max_genes_per_cell: 1500000
# min_cells_per_gene: 3
# min_fraction_mito: 0.0
# max_fraction_mito: 0.2
# min_fraction_ribo: 0.0
# max_fraction_ribo: 0.2
# Mitochondrial & Ribosomal Gene Detection
# var_gene_names: "gene_symbol"
# var_name_mitochondrial_genes: "foo"
# obs_name_mitochondrial_fraction: "foo"
mitochondrial_gene_regex: "^[mM][tT]-"
# var_name_ribosomal_genes: "foo"
# obs_name_ribosomal_fraction: "foo"
ribosomal_gene_regex: "^[Mm]?[Rr][Pp][LlSs]"
# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"
# Argumentsnextflow run openpipelines-bio/openpipeline \
-r 2.1.1 -latest \
-profile docker \
-main-script target/nextflow/workflows/rna/rna_singlesample/main.nf \
-params-file params.yaml
Note
Replace -profile docker with -profile podman or -profile singularity depending on the desired backend.
Argument groups
Input
| Name | Description | Attributes |
|---|---|---|
--id |
ID of the sample. | string, required, example: "foo" |
--input |
Path to the sample. | file, required, example: "dataset.h5mu" |
--layer |
Input layer to start from. By default, .X will be used. | string |
Output
| Name | Description | Attributes |
|---|---|---|
--output |
Destination path to the output. | file, required, example: "output.h5mu" |
Filtering options
| Name | Description | Attributes |
|---|---|---|
--min_counts |
Minimum number of counts captured per cell. | integer, example: 200 |
--max_counts |
Maximum number of counts captured per cell. | integer, example: 5000000 |
--min_genes_per_cell |
Minimum of non-zero values per cell. | integer, example: 200 |
--max_genes_per_cell |
Maximum of non-zero values per cell. | integer, example: 1500000 |
--min_cells_per_gene |
Minimum of non-zero values per gene. | integer, example: 3 |
--min_fraction_mito |
Minimum fraction of UMIs that are mitochondrial. Requires –obs_name_mitochondrial_fraction. | double, example: 0 |
--max_fraction_mito |
Maximum fraction of UMIs that are mitochondrial. Requires –obs_name_mitochondrial_fraction. | double, example: 0.2 |
--min_fraction_ribo |
Minimum fraction of UMIs that are ribosomal. Requires –obs_name_ribosomal_fraction. | double, example: 0 |
--max_fraction_ribo |
Maximum fraction of UMIs that are ribosomal. Requires –obs_name_ribosomal_fraction. | double, example: 0.2 |
Mitochondrial & Ribosomal Gene Detection
| Name | Description | Attributes |
|---|---|---|
--var_gene_names |
.var column name to be used to detect mitochondrial/ribosomal genes instead of .var_names (default if not set). Gene names matching with the regex value from –mitochondrial_gene_regex or –ribosomal_gene_regex will be identified as mitochondrial or ribosomal genes, respectively. | string, example: "gene_symbol" |
--var_name_mitochondrial_genes |
In which .var slot to store a boolean array corresponding the mitochondrial genes. | string |
--obs_name_mitochondrial_fraction |
When specified, write the fraction of counts originating from mitochondrial genes (based on –mitochondrial_gene_regex) to an .obs column with the specified name. Requires –var_name_mitochondrial_genes. | string |
--mitochondrial_gene_regex |
Regex string that identifies mitochondrial genes from –var_gene_names. By default will detect human and mouse mitochondrial genes from a gene symbol. | string, default: "^[mM][tT]-" |
--var_name_ribosomal_genes |
In which .var slot to store a boolean array corresponding the ribosomal genes. | string |
--obs_name_ribosomal_fraction |
When specified, write the fraction of counts originating from ribosomal genes (based on –ribosomal_gene_regex) to an .obs column with the specified name. Requires –var_name_ribosomal_genes. | string |
--ribosomal_gene_regex |
Regex string that identifies ribosomal genes from –var_gene_names. By default will detect human and mouse ribosomal genes from a gene symbol. | string, default: "^[Mm]?[Rr][Pp][LlSs]" |