Scanorama
Use Scanorama to integrate different experiments
Info
ID: scanorama
Namespace: integrate
Links
Example commands
You can run the pipeline using nextflow run
.
View help
You can use --help
as a parameter to get an overview of the possible parameters.
nextflow run openpipelines-bio/openpipeline \
-r 1.0.2 -latest \
-main-script target/nextflow/integrate/scanorama/main.nf \
--help
Run command
Example of params.yaml
# Arguments
input: # please fill in - example: "path/to/file"
modality: "rna"
# output: "$id.$key.output.h5ad"
# output_compression: "gzip"
obs_batch: "batch"
obsm_input: "X_pca"
obsm_output: "X_scanorama"
knn: 20
batch_size: 5000
sigma: 15
approx: true
alpha: 0.1
# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"
nextflow run openpipelines-bio/openpipeline \
-r 1.0.2 -latest \
-profile docker \
-main-script target/nextflow/integrate/scanorama/main.nf \
-params-file params.yaml
Note
Replace -profile docker
with -profile podman
or -profile singularity
depending on the desired backend.
Argument group
Arguments
Name | Description | Attributes |
---|---|---|
--input |
Input h5mu file | file , required |
--modality |
string , default: "rna" |
|
--output |
Output .h5mu file | file , required, default: "output.h5ad" |
--output_compression |
The compression format to be used on the output h5mu object. | string , example: "gzip" |
--obs_batch |
Column name discriminating between your batches. | string , default: "batch" |
--obsm_input |
Basis obsm slot to run scanorama on. | string , default: "X_pca" |
--obsm_output |
The name of the field in adata.obsm where the integrated embeddings will be stored after running this function. Defaults to X_scanorama. | string , default: "X_scanorama" |
--knn |
Number of nearest neighbors to use for matching. | integer , default: 20 |
--batch_size |
The batch size used in the alignment vector computation. Useful when integrating very large (>100k samples) datasets. Set to large value that runs within available memory. | integer , default: 5000 |
--sigma |
Correction smoothing parameter on Gaussian kernel. | double , default: 15 |
--approx |
Use approximate nearest neighbors with Python annoy; greatly speeds up matching runtime. | boolean , default: TRUE |
--alpha |
Alignment score minimum cutoff | double , default: 0.1 |