Popv
Performs popular major vote cell typing on single cell sequence data using multiple algorithms.
Info
ID: popv
Namespace: annotate
Links
Note that this is a one-shot version of PopV.
Example commands
You can run the pipeline using nextflow run
.
View help
You can use --help
as a parameter to get an overview of the possible parameters.
nextflow run openpipelines-bio/openpipeline \
-r 1.0.2 -latest \
-main-script target/nextflow/annotate/popv/main.nf \
--help
Run command
Example of params.yaml
# Inputs
input: # please fill in - example: "input.h5mu"
modality: "rna"
# input_layer: "foo"
# input_obs_batch: "foo"
# input_var_subset: "foo"
# input_obs_label: "foo"
unknown_celltype_label: "unknown"
# Outputs
# output: "$id.$key.output.h5mu"
# output_compression: "gzip"
# Arguments
methods: # please fill in - example: ["knn_on_scvi", "scanvi"]
# Reference
reference: # please fill in - example: "TS_Bladder_filtered.h5ad"
# reference_layer: "foo"
reference_obs_label: "cell_ontology_class"
reference_obs_batch: "donor_assay"
# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"
nextflow run openpipelines-bio/openpipeline \
-r 1.0.2 -latest \
-profile docker \
-main-script target/nextflow/annotate/popv/main.nf \
-params-file params.yaml
Note
Replace -profile docker
with -profile podman
or -profile singularity
depending on the desired backend.
Argument groups
Inputs
Arguments related to the input (aka query) dataset.
Name | Description | Attributes |
---|---|---|
--input |
Input h5mu file. | file , required, example: "input.h5mu" |
--modality |
Which modality to process. | string , default: "rna" |
--input_layer |
Which layer to use. If no value is provided, the counts are assumed to be in the .X slot. Otherwise, count data is expected to be in .layers[input_layer] . |
string |
--input_obs_batch |
Key in obs field of input adata for batch information. If no value is provided, batch label is assumed to be unknown. | string |
--input_var_subset |
Subset the input object with this column. | string |
--input_obs_label |
Key in obs field of input adata for label information. This is only used for training scANVI. Unlabelled cells should be set to "unknown_celltype_label" . |
string |
--unknown_celltype_label |
If input_obs_label is specified, cells with this value will be treated as unknown and will be predicted by the model. |
string , default: "unknown" |
Reference
Arguments related to the reference dataset.
Name | Description | Attributes |
---|---|---|
--reference |
User-provided reference tissue. The data that will be used as reference to call cell types. | file , required, example: "TS_Bladder_filtered.h5ad" |
--reference_layer |
Which layer to use. If no value is provided, the counts are assumed to be in the .X slot. Otherwise, count data is expected to be in .layers[reference_layer] . |
string |
--reference_obs_label |
Key in obs field of reference AnnData with cell-type information. | string , default: "cell_ontology_class" |
--reference_obs_batch |
Key in obs field of input adata for batch information. | string , default: "donor_assay" |
Outputs
Output arguments.
Name | Description | Attributes |
---|---|---|
--output |
Output h5mu file. | file , required, example: "output.h5mu" |
--output_compression |
string , example: "gzip" |
Arguments
Other arguments.
Name | Description | Attributes |
---|---|---|
--methods |
Methods to call cell types. By default, runs to knn_on_scvi and scanvi. | List of string , required, example: "knn_on_scvi", "scanvi" , multiple_sep: ";" |