Qc
A pipeline to add basic qc statistics to a MuData
Info
ID: qc
Namespace: workflows/qc
Links
Example commands
You can run the pipeline using nextflow run
.
View help
You can use --help
as a parameter to get an overview of the possible parameters.
nextflow run openpipelines-bio/openpipeline \
-r 1.0.1 -latest \
-main-script target/nextflow/workflows/qc/qc/main.nf \
--help
Run command
Example of params.yaml
# Inputs
id: # please fill in - example: "foo"
input: # please fill in - example: "input.h5mu"
modality: "rna"
# layer: "raw_counts"
# Outputs
# output: "$id.$key.output.h5mu"
# Mitochondrial Gene Detection
# var_name_mitochondrial_genes: "foo"
# obs_name_mitochondrial_fraction: "foo"
# var_gene_names: "gene_symbol"
mitochondrial_gene_regex: "^[mM][tT]-"
# QC metrics calculation options
# var_qc_metrics: ["ercc", "highly_variable"]
top_n_vars: [50, 100, 200, 500]
output_obs_num_nonzero_vars: "num_nonzero_vars"
output_obs_total_counts_vars: "total_counts"
output_var_num_nonzero_obs: "num_nonzero_obs"
output_var_total_counts_obs: "total_counts"
output_var_obs_mean: "obs_mean"
output_var_pct_dropout: "pct_dropout"
# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"
nextflow run openpipelines-bio/openpipeline \
-r 1.0.1 -latest \
-profile docker \
-main-script target/nextflow/workflows/qc/qc/main.nf \
-params-file params.yaml
Note
Replace -profile docker
with -profile podman
or -profile singularity
depending on the desired backend.
Argument groups
Inputs
Name | Description | Attributes |
---|---|---|
--id |
ID of the sample. | string , required, example: "foo" |
--input |
Path to the sample. | file , required, example: "input.h5mu" |
--modality |
Which modality to process. | string , default: "rna" |
--layer |
Layer to calculate qc metrics for. | string , example: "raw_counts" |
Mitochondrial Gene Detection
Name | Description | Attributes |
---|---|---|
--var_name_mitochondrial_genes |
In which .var slot to store a boolean array corresponding the mitochondrial genes. | string |
--obs_name_mitochondrial_fraction |
.Obs slot to store the fraction of reads found to be mitochondrial. Defaults to ‘fraction_’ suffixed by the value of –var_name_mitochondrial_genes | string |
--var_gene_names |
.var column name to be used to detect mitochondrial genes instead of .var_names (default if not set). Gene names matching with the regex value from –mitochondrial_gene_regex will be identified as a mitochondrial gene. | string , example: "gene_symbol" |
--mitochondrial_gene_regex |
Regex string that identifies mitochondrial genes from –var_gene_names. By default will detect human and mouse mitochondrial genes from a gene symbol. | string , default: "^[mM][tT]-" |
QC metrics calculation options
Name | Description | Attributes |
---|---|---|
--var_qc_metrics |
Keys to select a boolean (containing only True or False) column from .var. For each cell, calculate the proportion of total values for genes which are labeled ‘True’, compared to the total sum of the values for all genes. Defaults to the value from –var_name_mitochondrial_genes. | List of string , example: "ercc,highly_variable" , multiple_sep: ";" |
--top_n_vars |
Number of top vars to be used to calculate cumulative proportions. If not specified, proportions are not calculated. --top_n_vars 20,50 finds cumulative proportion to the 20th and 50th most expressed vars. |
List of integer , default: 50, 100, 200, 500 , multiple_sep: ";" |
--output_obs_num_nonzero_vars |
Name of column in .obs describing, for each observation, the number of stored values (including explicit zeroes). In other words, the name of the column that counts for each row the number of columns that contain data. | string , default: "num_nonzero_vars" |
--output_obs_total_counts_vars |
Name of the column for .obs describing, for each observation (row), the sum of the stored values in the columns. | string , default: "total_counts" |
--output_var_num_nonzero_obs |
Name of column describing, for each feature, the number of stored values (including explicit zeroes). In other words, the name of the column that counts for each column the number of rows that contain data. | string , default: "num_nonzero_obs" |
--output_var_total_counts_obs |
Name of the column in .var describing, for each feature (column), the sum of the stored values in the rows. | string , default: "total_counts" |
--output_var_obs_mean |
Name of the column in .obs providing the mean of the values in each row. | string , default: "obs_mean" |
--output_var_pct_dropout |
Name of the column in .obs providing for each feature the percentage of observations the feature does not appear on (i.e. is missing). Same as --output_var_num_nonzero_obs but percentage based. |
string , default: "pct_dropout" |
Outputs
Name | Description | Attributes |
---|---|---|
--output |
Destination path to the output. | file , required, example: "output.h5mu" |