Bbknn
BBKNN network generation
Info
ID: bbknn
Namespace: neighbors
Links
Example commands
You can run the pipeline using nextflow run
.
View help
You can use --help
as a parameter to get an overview of the possible parameters.
nextflow run openpipelines-bio/openpipeline \
-r 1.0.2 -latest \
-main-script target/nextflow/neighbors/bbknn/main.nf \
--help
Run command
Example of params.yaml
# Arguments
input: # please fill in - example: "path/to/file"
modality: "rna"
obsm_input: "X_pca"
obs_batch: "batch"
# output: "$id.$key.output.h5mu"
# output_compression: "gzip"
uns_output: "neighbors"
obsp_distances: "distances"
obsp_connectivities: "connectivities"
n_neighbors_within_batch: 3
n_pcs: 50
# n_trim: 123
# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"
nextflow run openpipelines-bio/openpipeline \
-r 1.0.2 -latest \
-profile docker \
-main-script target/nextflow/neighbors/bbknn/main.nf \
-params-file params.yaml
Note
Replace -profile docker
with -profile podman
or -profile singularity
depending on the desired backend.
Argument group
Arguments
Name | Description | Attributes |
---|---|---|
--input |
Input h5mu file | file , required |
--modality |
string , default: "rna" |
|
--obsm_input |
The dimensionality reduction in .obsm to use for neighbour detection. Defaults to X_pca. |
string , default: "X_pca" |
--obs_batch |
.obs column name discriminating between your batches. | string , default: "batch" |
--output |
Output .h5mu file. | file , required, example: "output.h5mu" |
--output_compression |
The compression format to be used on the output h5mu object. | string , example: "gzip" |
--uns_output |
Mandatory .uns slot to store various neighbor output objects. | string , default: "neighbors" |
--obsp_distances |
In which .obsp slot to store the distance matrix between the resulting neighbors. | string , default: "distances" |
--obsp_connectivities |
In which .obsp slot to store the connectivities matrix between the resulting neighbors. | string , default: "connectivities" |
--n_neighbors_within_batch |
How many top neighbours to report for each batch; total number of neighbours in the initial k-nearest-neighbours computation will be this number times the number of batches. | integer , default: 3 |
--n_pcs |
How many dimensions (in case of PCA, principal components) to use in the analysis. | integer , default: 50 |
--n_trim |
Trim the neighbours of each cell to these many top connectivities. May help with population independence and improve the tidiness of clustering. The lower the value the more independent the individual populations, at the cost of more conserved batch effect. If None (default), sets the parameter value automatically to 10 times neighbors_within_batch times the number of batches. Set to 0 to skip. |
integer |