Rna multisample
Processing unimodal multi-sample RNA transcriptomics data.
Info
ID: rna_multisample
Namespace: workflows/rna
Links
Example commands
You can run the pipeline using nextflow run
.
View help
You can use --help
as a parameter to get an overview of the possible parameters.
nextflow run openpipelines-bio/openpipeline \
-r 1.0.1 -latest \
-main-script target/nextflow/workflows/rna/rna_multisample/main.nf \
--help
Run command
Example of params.yaml
# Inputs
id: # please fill in - example: "concatenated"
input: # please fill in - example: "dataset.h5mu"
modality: "rna"
# layer: "foo"
# Output
# output: "$id.$key.output.h5mu"
# Filtering highly variable features
highly_variable_features_var_output: "filter_with_hvg"
highly_variable_features_obs_batch_key: "sample_id"
highly_variable_features_flavor: "seurat"
# highly_variable_features_n_top_features: 123
# QC metrics calculation options
var_qc_metrics: ["filter_with_hvg"]
top_n_vars: [50, 100, 200, 500]
output_obs_num_nonzero_vars: "num_nonzero_vars"
output_obs_total_counts_vars: "total_counts"
output_var_num_nonzero_obs: "num_nonzero_obs"
output_var_total_counts_obs: "total_counts"
output_var_obs_mean: "obs_mean"
output_var_pct_dropout: "pct_dropout"
# Nextflow input-output arguments
publish_dir: # please fill in - example: "output/"
# param_list: "my_params.yaml"
nextflow run openpipelines-bio/openpipeline \
-r 1.0.1 -latest \
-profile docker \
-main-script target/nextflow/workflows/rna/rna_multisample/main.nf \
-params-file params.yaml
Note
Replace -profile docker
with -profile podman
or -profile singularity
depending on the desired backend.
Argument groups
Inputs
Name | Description | Attributes |
---|---|---|
--id |
ID of the concatenated file | string , required, example: "concatenated" |
--input |
Path to the samples. | file , required, example: "dataset.h5mu" |
--modality |
Modality to process. | string , default: "rna" |
--layer |
Input layer to use. If not specified, .X is used. | string |
Output
Name | Description | Attributes |
---|---|---|
--output |
Destination path to the output. | file , required, example: "output.h5mu" |
Filtering highly variable features
Name | Description | Attributes |
---|---|---|
--highly_variable_features_var_output |
In which .var slot to store a boolean array corresponding to the highly variable features. | string , default: "filter_with_hvg" |
--highly_variable_features_obs_batch_key |
If specified, highly-variable features are selected within each batch separately and merged. This simple process avoids the selection of batch-specific features and acts as a lightweight batch correction method. For all flavors, featues are first sorted by how many batches they are highly variable. For dispersion-based flavors ties are broken by normalized dispersion. If flavor = ‘seurat_v3’, ties are broken by the median (across batches) rank based on within-batch normalized variance. | string , default: "sample_id" |
--highly_variable_features_flavor |
Choose the flavor for identifying highly variable features. For the dispersion based methods in their default workflows, Seurat passes the cutoffs whereas Cell Ranger passes n_top_features. | string , default: "seurat" |
--highly_variable_features_n_top_features |
Number of highly-variable features to keep. Mandatory if filter_with_hvg_flavor is set to ‘seurat_v3’. | integer |
QC metrics calculation options
Name | Description | Attributes |
---|---|---|
--var_qc_metrics |
Keys to select a boolean (containing only True or False) column from .var. For each cell, calculate the proportion of total values for genes which are labeled ‘True’, compared to the total sum of the values for all genes. | List of string , default: "filter_with_hvg" , example: "ercc,highly_variable" , multiple_sep: ";" |
--top_n_vars |
Number of top vars to be used to calculate cumulative proportions. If not specified, proportions are not calculated. --top_n_vars 20,50 finds cumulative proportion to the 20th and 50th most expressed vars. |
List of integer , default: 50, 100, 200, 500 , multiple_sep: ";" |
--output_obs_num_nonzero_vars |
Name of column in .obs describing, for each observation, the number of stored values (including explicit zeroes). In other words, the name of the column that counts for each row the number of columns that contain data. | string , default: "num_nonzero_vars" |
--output_obs_total_counts_vars |
Name of the column for .obs describing, for each observation (row), the sum of the stored values in the columns. | string , default: "total_counts" |
--output_var_num_nonzero_obs |
Name of column describing, for each feature, the number of stored values (including explicit zeroes). In other words, the name of the column that counts for each column the number of rows that contain data. | string , default: "num_nonzero_obs" |
--output_var_total_counts_obs |
Name of the column in .var describing, for each feature (column), the sum of the stored values in the rows. | string , default: "total_counts" |
--output_var_obs_mean |
Name of the column in .obs providing the mean of the values in each row. | string , default: "obs_mean" |
--output_var_pct_dropout |
Name of the column in .obs providing for each feature the percentage of observations the feature does not appear on (i.e. is missing). Same as --num_nonzero_obs but percentage based. |
string , default: "pct_dropout" |